

Innovative Backfill Grout for Dilative Soils

Germany

Presented by : Eugen Kleen Norbert Hoerlein

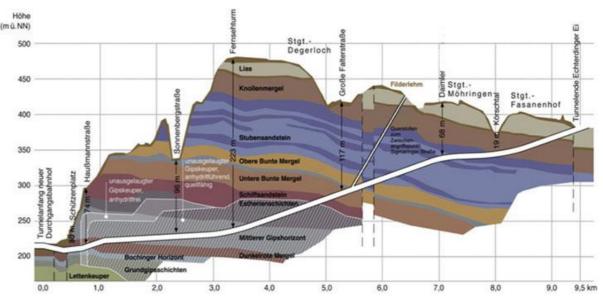
O_{AITES} Chuzhou-Nanjing 7th November 2018

- Introduction
- Practical Example Backfill Grout for "Unteren Fildertunnel"
- Binder on Geopolymer Basis
- Performed Initial Assessment Lab Trials
- Results of the First Tunnel Drive
- Conclusion

ITA AITES Chuzhou-Nanjing 7th November 2018

Introduction

- Mechanical tunnel drive in connection with segment lining shows increasing relevance worldwide
- So far backfill grout isn't included in the durability design of the construction object by default
- Nevertheless we recognize increasing consideration of backfill grout in the overall concept of securing long-term durability
- Increasing understanding that grout can be an intelligent material and not just a filler for embedding stones (e.g. drainage capable grout)



A Chuzhou-Nanjing 7th November 2018

Practical Example Backfill Grout for "Unterer Fildertunnel"

Unterer Fildertunnel – special requirement meets innovation

O_{AITES} Chuzhou-Nanjing 7th November 2018

Practical Example Backfill Grout for "Unteren Fildertunnel"

Requirements Backfill Grout

- High volume stability
- No water release / preventing of swelling (anhydrate horizon)
- Durability 100 years
- High sulfate resistance
- Environmental sustainability
- Safety in practical application

Solution

- Usage of a binder on geopolymer basis
- Usage of a phosphate additive

O_{AITES} Chuzhou-Nanjing 7th November 2018

Wagners Earth Friendly Concrete – Wellcamp Airport

O_{AITES} Chuzhou-Nanjing 7th November 2018

TECHNICAL

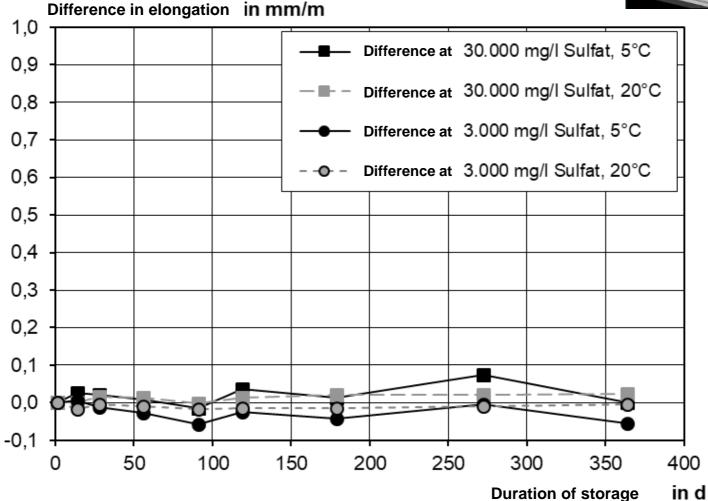
PRODUCT/

Mixture Optimization and Initial Tests

- Characterization of basic materials (ibac)
- Development of mix-design and optimization (site, MC, BUI)
- Mechanical properties (RUB)
- Water release, shrinkage, sources of surrounding anhydrate layer (ibac, BUI)
- Durablity (ibac, BUI)
- Effect of phosphate additive (ibac, MC, FIB, BUI)
- Environmental sustainability (ibac, BUI)

ES Chuzhou-Nanjing 7th November 2018

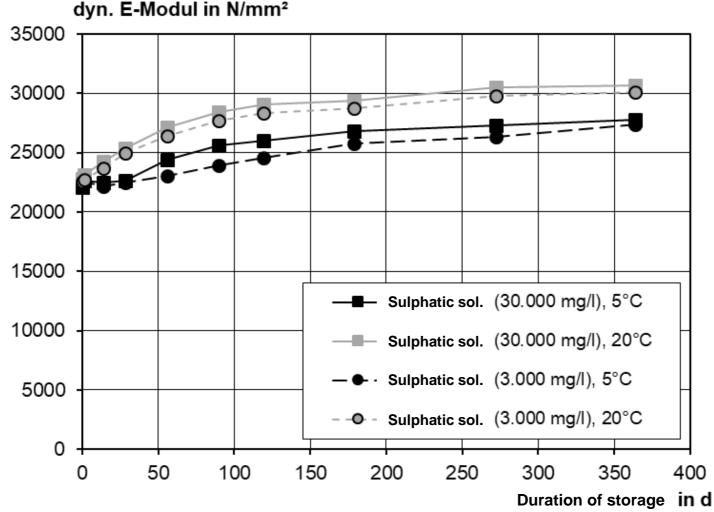
Basic Materials and mortar composition



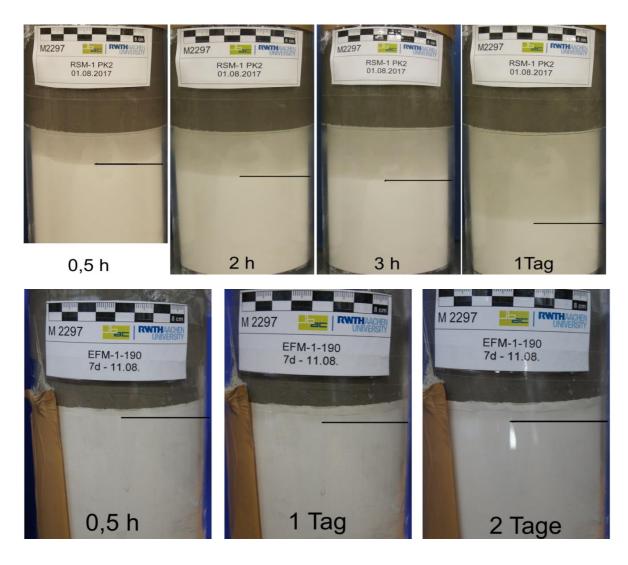
Material	Туре	Unit	Content
Binder	Slag / Fly ash	kg/m ³	~ 500
Activator 1	Sodium silicate	M% v. b.	10
Activator 2	Alkaline phosphate	M% v. b.	2,5
w/b	-	-	0,45
Plasticizer	Matched substance	M% v. b.	0,5
Aggregate	Quartzitic and calcitic sand/grit (7 mm)	kg/m³	~ 1.350

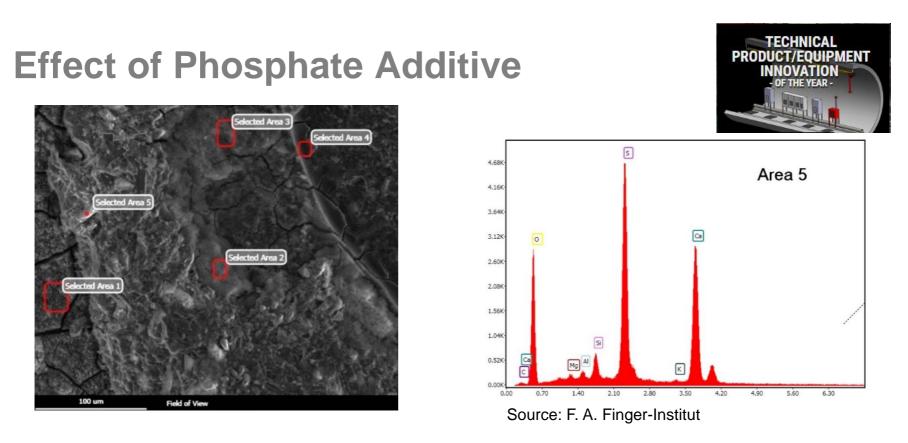
O_{AITES} Chuzhou-Nanjing 7th November 2018

Sulphate Resistance – Difference in Elongation



OAITES Chuzhou-Nanjing 7th November 2018


Sulphate Resistance – Dynamic E-Module


AITES Chuzhou-Nanjing 7th November 2018

Water Release

- At presence of sodium or potassium phosphate the solubility of Sulphate declines significantly
- This can be proven by solubility products and the "law of mass"
- The anhydrite of the soil doesn't pass over into solution when getting in contact with the grout
- As a result, the anhydrite isn't swelling and Duration of storage

ITA AITES Chuzhou-Nanjing 7th November 2018

Effect of Phosphate Additive

Why choosing phosphate solution?

Solubilities:

 Lp_{Gipsym} = $[Ca^{2+}][SO_4^{2-}] = 10^{-4,32}$

- $Lp_{Phosphate} = [Ca^{2+}]^3 [PO_4^{3-}]^2 = 10^{-32,7}$
- At presence of phosphate and sulfate the sulfate concentration goes down to 1/40000

AlTES Chuzhou-Nanjing 7th November 2018

Initial Trial – Large-Scale Trial

Results of the first tunnel drive

- No stresses were measured
- Perfect workability until the backfill grout is activated – good pumpability even after several days
- Environmental friendly confirmed by everyday external supervision
- Material consumption exactly as calculated

ITA AITES Chuzhou-Nanjing 7th November 2018

Conclusion

- The production of backfill grout using a binder on geopolymer basic is possible and working very well on site
- The addition of an activator can happen at the pilaster strip so you can react flexible when facing changing operating conditions
- Grout stays workable above ground significant cost reduction if TBM stands still (less cleaning costs)
- Usual mixing unit can be used
- Also working as 2K-system without supporting grain for smaller diameters (e.g. metros)
- As expected, the grout shows a very high Sulphatic resistance by existing environmental sustainability
- Water release is significantly lower compared to a classical 1K-grout
- The usage of an phosphate additive prevents the conversion of anhydrite to gypsum – from our knowledge exclusive solution for such conditions

Chuzhou-Nanjing 7th November 2018

Project Partner

O_{AITES} Chuzhou-Nanjing 7th November 2018